International Journal Of Mathematical Sciences And Engineering Applications

(IJMSEA)

International J. of Math. Sci. \& Engg. Appls. (IJMSEA)
ISSN 0973-9424, Vol. 14 No. II (December, 2020), pp. 19-27

ECCENTRIC AND SUPER ECCENTRIC SYMMETRIC n-SIGRAPHS

C. N. HARSHAVARDHANA ${ }^{1}$ AND R. KEMPARAJU ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government First Grade College for Women, Holenarasipur-573 211, India.
${ }^{2}$ Department of Mathematics, Government College for Women, Chintamani-563 125, India

Abstract

In this paper we introduced the new notions eccentric and super eccentric symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterizations of these notions. Further, we presented some switching equivalent characterizations.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Key Words : Symmetric n-sigraph, Symmetric n-marked graph, Balance, Switching, Eccentric symmetric n-sigraph, Super eccentric symmetric n-sigraph, Complementation.

2020 AMS Subject Classification : 05C22
(c) http: //www.ascent-journals.com

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ ($S_{n}=(G, \mu)$), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}\left(\mu: V \rightarrow H_{n}\right)$ is a function.
In this paper by an n-tuple/n-sigraph $/ n$-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.
An n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.
Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.
In [10], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [6]).
Definition : Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note: An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [10].
Theorem 1.1 (E. Sampathkumar et al. [10]) : An n-sigraph $S_{n}=(G, \sigma)$ is ibalanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge $u v$ is equal to the product of the n-tuples of u and v.
In [10], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [4], [7-9], [12-22]).
Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.
Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.
We make use of the following known result (see [10]).
Theorem 1.2 (E. Sampathkumar et al. [10]) : Given a graph G, any two n sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in$ $\bar{G}, \sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Theorem 1.1.

In a graph G, the distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is defined by $r(G)=\min \{e(u): u \in G\}$ and the diameter $d(G)$ of G is defined by $d(G)=\max \{e(u): u \in G\}$. A graph for which $r(G)=d(G)$ is called a self-centered graph of radius $r(G)$.
Let $G=(V, E)$ be a simple undirected graph. The eccentricity $e(v)$ of a vertex in $V(G)$ is defined by $e(v)=\max _{u \in V} d(u, v)$, where $d(u, v)$ stands for the length of the shortest path in G between u and v. In case G is disconnected and u and v belong to different components, we set $d(u, v)=+\infty$.

Akiyama et al. [1] defined the eccentric graph $\mathcal{E}(G)$ of G as a graph on the same set of vertices as G obtained, by joining two vertices if and only if $d(u, v)=\min \{e(u), e(v)\}$. Iqbalunnisa et al. [3] defined the super eccentric graph $\mathcal{S E}(G)$ of a graph G on the same set of vertices as G where the adjacency relation between vertices is defined by
$d(u, v) \geq \operatorname{rad}(G)$ while G is connected and when G is disconnected, two vertices are adjacent in $\mathcal{S E}(G)$ if they belong to different components of G.

2. Eccentric n-Sigraph of an n-Sigraph

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of eccentric graphs to n-sigraphs as follows:
The eccentric n-sigraph $\mathcal{E}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $\mathcal{E}(G)$ and the n-tuple of any edge $u v$ is $\mathcal{E}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called eccentric n-sigraph, if $S_{n} \cong \mathcal{E}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result restricts the class of eccentric graphs.

Theorem 2.1 : For any n-sigraph $S_{n}=(G, \sigma)$, its eccentric n-sigraph $\mathcal{E}\left(S_{n}\right)$ is i balanced.

Proof : Since the n-tuple of any edge $u v$ in $\mathcal{E}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $\mathcal{E}\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{t h}$ iterated eccentric n-sigraph $\mathcal{E}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
(\mathcal{E})^{0}\left(S_{n}\right)=S_{n},(\mathcal{E})^{k}\left(S_{n}\right)=\mathcal{E}\left((\mathcal{E})^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2 : For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k,(\mathcal{E})^{k}\left(S_{n}\right)$ is i-balanced.

The following result characterize n-sigraphs which are eccentric n-sigraphs.
Theorem 2.3 : An n-sigraph $S_{n}=(G, \sigma)$ is an eccentric n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is an eccentric graph.

Proof : Suppose that S_{n} is i-balanced and G is a $\mathcal{E}(G)$. Then there exists a graph H such that $\mathcal{E}(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1 , there exists an n marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{E}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is an eccentric n sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is an eccentric n-sigraph. Then there exists an n sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\mathcal{E}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $\mathcal{E}(G)$ of H and by Theorem 2.1, S_{n} is i-balanced.

Let $S_{i}=\{v \in V(G) \mid e(v)=i\}, i=1,2, \cdots$. In [?], the authors completely characterize those graphs whose eccentric graph is isomorphic to its complement.
Theorem 2.4: $\mathcal{E}(G) \cong \bar{G}$ if and only if $S_{i}=\phi, i=1,4,5,6, \cdots$ and no two vertices in S_{3} have a common nieghbour.

In view of the above result, we have the following result that characterizes the family of n-sigraphs satisfies $\mathcal{E}\left(S_{n}\right) \sim \overline{S_{n}}$.
Theorem 2.5: For any n-sigraph $S_{n}=(G, \sigma), \mathcal{E}\left(S_{n}\right) \sim \overline{S_{n}}$ if, and only if, G is a graph with $S_{i}=\phi, i=1,4,5,6, \cdots$ and no two vertices in S_{3} have a common nieghbour.
Proof : Suppose that $\mathcal{E}\left(S_{n}\right) \sim \overline{S_{n}}$. Then clearly, $\mathcal{E}(G) \cong \bar{G}$. Hence by Theorem 2.4, G is a graph with $S_{i}=\phi, i=1,4,5,6, \cdots$ and no two vertices in S_{3} have a common nieghbour.
Conversely, suppose that S_{n} is an n-sigraph whose underlying graph G is a graph $S_{i}=\phi$, $i=1,4,5,6, \cdots$ and no two vertices in S_{3} have a common nieghbour. Then by Theorem $2.4, \mathcal{E}(G) \cong \bar{G}$. Since for any n-sigraph S_{n}, both $\mathcal{E}\left(S_{n}\right)$ and $\left.\overline{(} S_{n}\right)$ are i-balanced, the result follows by Theorem 1.2.
The following result characterizes the n-sigraphs which are cycle isomorphic to eccentric n-sigraphs. In case of graphs the following result is due to Akiyama et al. [1] :
Theorem 2.6: If $r(G)=1$, then $\mathcal{E}(G) \cong G$ if and only if $<V-S_{1}>_{G}$ is selfcomplementary, where S_{1} denotes the set of vertices in G of eccentricity 1 .
Theorem 2.7 : An n-sigraph $S_{n}=(G, \sigma)$ with $r(G)=1, S_{n} \sim \mathcal{E}\left(S_{n}\right)$ if, and only if, S_{n} is i-balanced and $<V-S_{1}>_{G}$ is self-complementary, where S_{1} denotes the set of vertices in G of eccentricity 1.
Proof: Suppose $\mathcal{E}\left(S_{n}\right) \sim S_{n}$. This implies, $\mathcal{E}(G) \cong G$ and hence by Theorem 2.6, we see that the graph G satisfies the conditions in Theorem 2.6. Now, if S_{n} is any n-sigraph with $<V-S_{1}>_{G}$ is self-complementary, where S_{1} denotes the set of vertices in G of eccentricity 1 , Theorem 2.1 implies that $\mathcal{E}\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i-unbalanced and its eccentric n-sigraph $\mathcal{E}\left(S_{n}\right)$ being i-balanced can not be switching equivalent to S_{n} in accordance with Theorem 1.2. Therefore, S_{n} must be i-balanced.
Conversely, suppose that S_{n} is i-balanced n-sigraph with $<V-S_{1}>_{G}$ is self-complementary, where S_{1} denotes the set of vertices in G of eccentricity 1 . Then, since $\mathcal{E}\left(S_{n}\right)$ is i-balanced as per Theorem 2.1 and since $\mathcal{E}(G) \cong G$ by Theorem 2.6, the result follows from Theorem 1.2 again.

3. Super Eccentric n-Sigraph of an n-Sigraph

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of super eccentric graphs to n-sigraphs as follows:

The super eccentric n-sigraph $\mathcal{S E}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $\mathcal{S E}(G)$ and the n-tuple of any edge $u v$ is $\mathcal{S E}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called super eccentric n-sigraph, if $S_{n} \cong \mathcal{S E}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result restricts the class of super eccentric graphs.
Theorem 3.1: For any n-sigraph $S_{n}=(G, \sigma)$, its super eccentric n-sigraph $\mathcal{S E}\left(S_{n}\right)$ is i-balanced.

Proof : Since the n-tuple of any edge $u v$ in $\mathcal{S E}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $\mathcal{S E}\left(S_{n}\right)$ is i-balanced.
For any positive integer k, the $k^{\text {th }}$ iterated super eccentric n-sigraph $\mathcal{S E}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
(\mathcal{S E})^{0}\left(S_{n}\right)=S_{n},(\mathcal{S E})^{k}\left(S_{n}\right)=\mathcal{S E}\left((\mathcal{S E})^{k-1}\left(S_{n}\right)\right)
$$

Corollary 3.2: For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k,(\mathcal{S E})^{k}\left(S_{n}\right)$ is i-balanced.
The following result characterize n-sigraphs which are super eccentric n-sigraphs.
Theorem 3.3: An n-sigraph $S_{n}=(G, \sigma)$ is a super eccentric n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a super eccentric graph.
Proof: Suppose that S_{n} is i-balanced and G is a $\mathcal{S E}(G)$. Then there exists a graph H such that $\mathcal{S E}(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.1, there exists an n marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{S E}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a super eccentric n-sigraph.
Conversely, suppose that $S_{n}=(G, \sigma)$ is a super eccentric n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\mathcal{S E}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $\mathcal{S E}(G)$ of H and by Theorem 2.1, S_{n} is i-balanced.
In [5], the author characterize those graphs whose super eccentric graph is isomorphic to its complement.

Theorem 3.4: For any graph $G, \mathcal{S E}(G) \cong \bar{G}$ if and only if $r(G)=2$ or G is disconnected with each component complete.
In view of the above result, we have the following result that characterizes the family of n-sigraphs satisfies $\mathcal{S E}\left(S_{n}\right) \sim \overline{S_{n}}$.

Theorem 3.5 : For any n-sigraph $S_{n}=(G, \sigma), \mathcal{S E}\left(S_{n}\right) \sim \overline{S_{n}}$ if, and only if, G is a graph with $r(G)=2$ or G is disconnected with each component complete.
Proof : Suppose that $\mathcal{S E}\left(S_{n}\right) \sim \overline{S_{n}}$. Then clearly, $\mathcal{S E}(G) \cong \bar{G}$. Hence by Theorem 3.4, G is a graph with $r(G)=2$ or G is disconnected with each component complete.

Conversely, suppose that S_{n} is an n-sigraph whose underlying graph G is a graph with $r(G)=2$ or G is disconnected with each component complete. Then by Theorem 3.4, $\mathcal{S E}(G) \cong \bar{G}$. Since for any n-sigraph S_{n}, both $\mathcal{S E}\left(S_{n}\right)$ and \bar{S}_{n} are i-balanced, the result follows by Theorem 1.2.

4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.
For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ replaced by a^{m}.
For an n-sigraph $S_{n}=(G, \sigma)$, the $\mathcal{D C P}\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $\mathcal{D C P}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$. For an n-sigraph $S_{n}=(G, \sigma)$, the $\mathcal{E}\left(S_{n}\right)$ and $\mathcal{S E}\left(S_{n}\right)$ are i-balanced. We now examine, the conditions under which m-complement of $\mathcal{E}\left(S_{n}\right)$ and $\mathcal{S E}\left(S_{n}\right)$ are i-balanced, where for any $m \in H_{n}$.

Theorem 4.1: Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $\mathcal{E}(G)$ $(\mathcal{S E}(G))$ is bipartite then $\left(\mathcal{E}\left(S_{n}\right)\right)^{m}\left(\left(\mathcal{S E}\left(S_{n}\right)\right)^{m}\right)$ is i-balanced.

Proof: Since, by Theorem 2.1 (Theorem 3.1), $\mathcal{E}\left(S_{n}\right)\left(\mathcal{S E}\left(S_{n}\right)\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{E}\left(S_{n}\right)\left(\mathcal{S E}\left(S_{n}\right)\right)$ whose $k^{t h}$ co-ordinate are - is even. Also, since $\mathcal{E}(G)(\mathcal{S E}(G))$ is bipartite, all cycles have even
length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{E}\left(S_{n}\right)$ $\left(\mathcal{S E}\left(S_{n}\right)\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(\mathcal{E}\left(S_{n}\right)\right)^{t}\left(\left(\mathcal{S E}\left(S_{n}\right)\right)^{t}\right)$ is i-balanced.

References

[1] Akiyama J., Ando K. and Avis D., Eccentric graphs, Discrete Mathematics, 56 (1985), 1-6.
[2] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
[3] Iqbalunnisa T.N. Janakiraman and Srinivasan N., On antipodal, eccentric and super-eccentric graph of a graph, J. Ramanujan Math. Soc., 4(2) (1989), 145161.
[4] Lokesha V., Reddy P. S. K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[5] Parameswaran C., Contributions to some topics in graph theory, Ph.D. thesis, Madurai Kamaraj University, Madurai, (2013).
[6] Rangarajan R. and Reddy P. S. K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[7] Rangarajan R., Reddy P. S. K. and Subramanya M.S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85. R.
[8] Rangarajan R., Reddy P. S. K. and SonerN. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[9] Rangarajan R., Reddy P.S.K. and Soner N. D., $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure \& Applied Mathematics, 29(2012), 87-92.
[10] Sampathkumar E., Reddy P.S.K., and Subramanya M. S., Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[11] Sampathkumar E., Reddy P.S.K., and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[12] Reddy P.S.K. and Prashanth B., Switching equivalence in symmetric n-sigraphsI, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[13] Reddy P.S.K., Vijay S. and Prashanth B., The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009), 21-27.
[14] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[15] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[16] Reddy P.S.K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011), 95-101.
[17] Reddy P.S.K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[18] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[19] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[20] Reddy P.S.K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[21] Reddy P.S.K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95101.
[22] Reddy P.S.K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.

